Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Intervalo de ano de publicação
5.
J Exp Zool B Mol Dev Evol ; 330(5): 296-304, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29845724

RESUMO

The evolution of division of labor between sterile and fertile individuals represents one of the major transitions in biological complexity. A fascinating gradient in eusociality evolved among the ancient hemimetabolous insects, ranging from noneusocial cockroaches through the primitively social lower termites-where workers retain the ability to reproduce-to the higher termites, characterized by lifetime commitment to worker sterility. Juvenile hormone (JH) is a prime candidate for the regulation of reproductive division of labor in termites, as it plays a key role in insect postembryonic development and reproduction. We compared the expression of JH pathway genes between workers and queens in two lower termites (Zootermopsis nevadensis and Cryptotermes secundus) and a higher termite (Macrotermes natalensis) to that of analogous nymphs and adult females of the noneusocial cockroach Blattella germanica. JH biosynthesis and metabolism genes ranged from reproductive female-biased expression in the cockroach to predominantly worker-biased expression in the lower termites. Remarkably, the expression profile of JH pathway genes sets the higher termite apart from the two lower termites, as well as the cockroach, indicating that JH signaling has undergone major changes in this eusocial termite. These changes go beyond mere shifts in gene expression between the different castes, as we find evidence for positive selection in several termite JH pathway genes. Thus, remodeling of the JH pathway may have played a major role in termite social evolution, representing a striking case of convergent molecular evolution between the termites and the distantly related social hymenoptera.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Isópteros/genética , Hormônios Juvenis/genética , Animais , Blattellidae/genética , Blattellidae/crescimento & desenvolvimento , Evolução Molecular , Feminino , Hormônios Juvenis/biossíntese , Hormônios Juvenis/metabolismo , Ninfa , Comportamento Social
6.
Nat Ecol Evol ; 2(3): 557-566, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29403074

RESUMO

Around 150 million years ago, eusocial termites evolved from within the cockroaches, 50 million years before eusocial Hymenoptera, such as bees and ants, appeared. Here, we report the 2-Gb genome of the German cockroach, Blattella germanica, and the 1.3-Gb genome of the drywood termite Cryptotermes secundus. We show evolutionary signatures of termite eusociality by comparing the genomes and transcriptomes of three termites and the cockroach against the background of 16 other eusocial and non-eusocial insects. Dramatic adaptive changes in genes underlying the production and perception of pheromones confirm the importance of chemical communication in the termites. These are accompanied by major changes in gene regulation and the molecular evolution of caste determination. Many of these results parallel molecular mechanisms of eusocial evolution in Hymenoptera. However, the specific solutions are remarkably different, thus revealing a striking case of convergence in one of the major evolutionary transitions in biological complexity.


Assuntos
Blattellidae/genética , Evolução Molecular , Genoma , Isópteros/genética , Comportamento Social , Animais , Evolução Biológica , Blattellidae/fisiologia , Isópteros/fisiologia , Filogenia
7.
J Invertebr Pathol ; 153: 92-98, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29452083

RESUMO

BACKGROUND: Microsporidia are obligate parasites that possess some of the smallest eukaryotic genomes. Several insect species are susceptible to infections by microsporidian parasites. Paranosema whitei frequently infects young larvae of Tribolium castaneum and obligately kills the host whereupon transmission to subsequent hosts is accomplished via spores. P. whitei infection results in developmental arrest of T. castaneum, preventing larvae from pupation. The mechanisms underlying P. whitei virulence as well as the molecular underpinning of host defenses remain uncharacterized. In the present study, we evaluated gene expression differences of T. castaneum infected with the microsporidian parasite P. whitei. RESULTS: More than 1500 T. castaneum genes were differentially expressed after infection with P. whitei. Several important host pathways appeared to be differentially expressed after infection, where immune genes were among the highest differential expressed genes. Genes involved in the Toll pathway and its effectors were specifically upregulated. Furthermore, iron homeostasis processes and transmembrane transport appeared significantly altered after P. whitei infection. Krüppel homolog 1 (Kr-h1) and other genes of the juvenile hormone (JH) pathway appeared differentially expressed after parasite infection. In addition, a small number of long intergenic non-coding RNAs (lincRNAs) appeared differentially expressed after P. whitei infection. CONCLUSION: In this study we characterized for the first time using RNA-seq the immune response of T. castaneum to P. whitei. Other pathways (transmembrane transport, iron homeostasis, protein synthesis, JH) indicate possible alterations of the host by the parasite such as a possible developmental arrest caused by JH regulation. Furthermore we find evidence that some lincRNAs might be connected to defense as previously reported for other insect species.


Assuntos
Regulação da Expressão Gênica/fisiologia , Interações Hospedeiro-Parasita/genética , Nosema , Tribolium/parasitologia , Animais , Hormônios Juvenis/genética , Tribolium/imunologia
8.
BMC Evol Biol ; 17(1): 155, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28673235

RESUMO

BACKGROUND: The ever increasing availability of genomes makes it possible to investigate and compare not only the genomic complements of genes and proteins, but also of RNAs. One class of RNAs, the long noncoding RNAs (lncRNAs) and, in particular, their subclass of long intergenic noncoding RNAs (lincRNAs) have recently gained much attention because of their roles in regulation of important biological processes such as immune response or cell differentiation and as possible evolutionary precursors for protein coding genes. lincRNAs seem to be poorly conserved at the sequence level but at least some lincRNAs have conserved structural elements and syntenic genomic positions. Previous studies showed that transposable elements are a main contribution to the evolution of lincRNAs in mammals. In contrast, plant lincRNA emergence and evolution has been linked with local duplication events. However, little is known about their evolutionary dynamics in general and in insect genomes in particular. RESULTS: Here we compared lincRNAs between seven insect genomes and investigated possible evolutionary changes and functional roles. We find very low sequence conservation between different species and that similarities within a species are mostly due to their association with transposable elements (TE) and simple repeats. Furthermore, we find that TEs are less frequent in lincRNA exons than in their introns, indicating that TEs may have been removed by selection. When we analysed the predicted thermodynamic stabilities of lincRNAs we found that they are more stable than their randomized controls which might indicate some selection pressure to maintain certain structural elements. We list several of the most stable lincRNAs which could serve as prime candidates for future functional studies. We also discuss the possibility of de novo protein coding genes emerging from lincRNAs. This is because lincRNAs with high GC content and potentially with longer open reading frames (ORF) are candidate loci where de novo gene emergence might occur. CONCLUSION: The processes responsible for the emergence and diversification of lincRNAs in insects remain unclear. Both duplication and transposable elements may be important for the creation of new lincRNAs in insects.


Assuntos
Genoma de Inseto , Insetos/classificação , Insetos/genética , RNA Longo não Codificante/genética , Animais , Elementos de DNA Transponíveis , Éxons , Íntrons , Fases de Leitura Aberta
9.
Genome Biol Evol ; 8(10): 3120-3139, 2016 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-27604882

RESUMO

Daphnia species have become models for ecological genomics and exhibit interesting features, such as high phenotypic plasticity and a densely packed genome with many lineage-specific genes. They are also cyclic parthenogenetic, with alternating asexual and sexual cycles and environmental sex determination. Here, we present a de novo transcriptome assembly of over 32,000 D. galeata genes and use it to investigate gene expression in females and spontaneously produced males of two clonal lines derived from lakes in Germany and the Czech Republic. We find that only a low percentage (18%) of genes shows sex-biased expression and that there are many more female-biased gene (FBG) than male-biased gene (MBG). Furthermore, FBGs tend to be more conserved between species than MBGs in both sequence and expression. These patterns may be a consequence of cyclic parthenogenesis leading to a relaxation of purifying selection on MBGs. The two clonal lines show considerable differences in both number and identity of sex-biased genes, suggesting that they may have reproductive strategies differing in their investment in sexual reproduction. Orthologs of key genes in the sex determination and juvenile hormone pathways, which are thought to be important for the transition from asexual to sexual reproduction, are present in D. galeata and highly conserved among Daphnia species.


Assuntos
Daphnia/genética , Regulação da Expressão Gênica no Desenvolvimento , Partenogênese/genética , Transcriptoma , Animais , Daphnia/crescimento & desenvolvimento , Daphnia/fisiologia , Feminino , Masculino , Seleção Genética , Processos de Determinação Sexual/genética
10.
Zoology (Jena) ; 119(4): 298-306, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27421680

RESUMO

Among the most common forms of interaction between species are those between hosts and their parasites and they have important implications for evolutionary theory. Understanding both the phenotypic and genotypic processes governing such interactions is a major endeavour in biology, but is a complex and challenging task. The development of next generation sequencing technologies has recently opened up this field from a molecular perspective, allowing us access to the genomic data underlying laboratory or wild phenotypes. The data obtained from such technologies has many advantages over previous methods, such as being more abundant, often more accurate, less labour intensive to generate and more cost effective to produce. We present a review of the impact of next generation sequencing data on the study of host-parasite evolution and current topics being explored with this data. We focus on two main data types, genomic and transcriptomic. We discuss popular computational approaches which can help us characterise the molecular forces driving host-parasite systems and highlight some studies which have utilised such approaches to gain information about particular immune processes. We furthermore highlight some promising perspectives from emerging and new technologies which will allow researchers to reach a deeper understanding of these interactions.


Assuntos
Simulação por Computador , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/imunologia , Modelos Imunológicos , Técnicas de Amplificação de Ácido Nucleico/métodos , Animais , Evolução Biológica , Regulação da Expressão Gênica/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...